Bluetooth Protocol Stack

ISQA 8310

12/10/2003

Project Team: Victoria Badura, Sohel Imroz, Dev Barua, Tejinder Bajwa

Introduction

- Short range radio frequency technology
- Bluetooth is used to create a wireless piconet
- Primary function is cable replacement
- Can be used to transmit either audio or data

Bluetooth

Like any network, Bluetooth has protocol layers that define the network and allow it to function.

12/10/2003

Baseband Protocols

- These protocols function very much like the physical and data link layer protocols in TCP/IP protocol stack.
- Baseband and Link Control layer controls the physical RF link.
 - Two types of links
 - Synchronous Connection Oriented (SCO) Circuit-switched
 - Audio
 - Asynchronous Connection-Less (ACL) Packet-switched
 - Data

12/10/2003

Link Manager Protocol

- Responsible for link set-up.
- Control and negotiation of packet sizes.
- Manages power modes etc.
- Monitors the state of the piconet.

Logical Link Control and Adaptation Protocol (L2CAP)

- Multiplexing
- Segmentation reassembly
- Quality of Service
- Group abstraction

Service Discovery Protocol

- Defines how a client application can act to discover a Bluetooth server
- Defines how a client can search for a service
- Allows for discovery of new services
- Allows for discovery of services no longer available

Cable Replacement Protocol

• RFCOMM and its functions:

- Provide emulation
- Provide transport capabilities
- Provide reliable data streams
- RFCOMM devices:
 - PCs or Printers
 - Modems

12/10/2003

RFCOMM Frame Types

- UA (Unnumbered Acknowledgement)
- SABM (Start Asynchronous Balanced Mode)
- DM (Disconnected Mode)
- DISC (Disconnect)
- UIH (Unnumbered Information with header check)

RFCOMM Frame Structure

4	8	12	16	20	24	28	32
Address	T	Control		Length		Length or Data	
Data (0 - 32767 Bytes)							
		(-		-,,	_	FCS	

Bluetooth[™]

Address Field

Control Field

Length Field

Data

Telephony Control Protocol

- Telephony Control Specification
 - Telephony Control Specification Binary
 - Call Control
 - Group Management
 - Connectionless TCS
- Operations of TCS can be categorized into two:

Operations between devices

Single-point configuration

Telephony Control Protocol (cont.)

Multi-Point Configuration

- Operations between layers
- Telephony Control Specification
 - Telephony Control AT Commands

12/10/2003

Adopted Protocols

- PPP
- TCP / UDP / IP
- WAP
- OBEX

Adopted Protocols (cont.)

- Point-to-Point Protocol (PPP)
 - Runs over RFCOMM
 - Transport multi-protocol datagrams to P-P links
- TCP/UDP/IP
 - Communicate with other Bluetooth enabled devices
 - TCP is used for OBEX
 - UDP is used for WAP
- Wireless Application Protocol (WAP)
 - Bring internet to cellular phones
 - Reuse upper applications developed for WAP application environment.
- Object Exchange Protocol (OBEX)
 - Session layer protocol
 - Each object has header ID and value.
 - Header example: Count, Name, Type, Length, etc.

12/10/2003

OBEX

OBEX Session Protocol

- Request-response pair
- Clients issue requests
- Servers issue responses
- Each request packet:
 - 1 byte opcode
 - 2 bytes length
 - Data

Questions

12/10/2003

